
Energy Consumption Analysis: on a Multicore
Architecture

Cioffi Daniele, Consalvo Mario, Delli Paoli Michele
Department of Computer Science

University of Salerno
Italy

Abstract—In order to assess how much energy is consumed
during a computation, careful measurements are needed. Intel’s
Running Average Power Limit (RAPL) interface is a powerful
tool for this purpose. RAPL provides power limiting functions
and accurate energy readings for CPU and DRAM that are
easily accessible through various interfaces. The project fo-
cuses on measurements and benchmarking during computation
aimed at solving arithmetic intensity problems such as matrix
multiplication. Our results are shown in different forms for a
comprehensive analysis.

I. INTRODUCTION

Energy efficiency in data centers has become one of the
biggest possibilities in the last decade not only because of the
monetary cost but also because of environmental sustainability
[1]. Data center power consumption is steadily increasing and
there is a need to apply optimizations in hardware and software
to achieve the best performance per watt. Many forecasting
models or techniques require an accurate measurement of
data center energy consumption. Until recently, measuring the
energy consumption of a computer system required a separate
metering system. In addition to the difficulties of purchasing,
deploying and using external power meters, their measurement
accuracy and granularity are usually inadequate for detailed
analysis. Also, it is not possible to divide the power into differ-
ent parts of the computing system inside the chip. It is possible
to use model-based power estimation, which uses a set of
performance counters and a computational model to transform
performance readings into estimates of energy consumption.
The accuracy of this approach is highly dependent on the
quality of the model and is generally unable to give good
results especially with highly fluctuating workloads. There are
few research works regarding this problem and for this reason
our study is focused to find a correlation between energy
consumption and multi-threading applications on a data-center
like server. This work will utilize Intel’s Running Average
Power Limit (RAPL) interfaces for data collection. While this
interface provides the ability to set power limits for various
chip domains, we will only read energy state registers, in order
to better understand how the energy consumption varies from
different optimizations of the same application.

II. STATE OF ART: RAPL
Intel’s RAPL interface is a feature introduced in the Intel

Sandy Bridge architecture. RAPL allows energy consumption
to be measured at very fine granularity and a high sampling

rate, on different system domains. To validate the accuracy
of these energy measurements many researchers [2] have com-
pared RAPL evaluation with external devices measurements.
The results [3] are overall comparable and Intel’s interface
becomes more accurate with newer CPUs generations.

Domains. RAPL supports multiple power domains. Each
power domain informs the energy consumption of the domain,
energy measurement units, minimum or maximum power
supported by the domain. The supported domains [1] (on
some architecture some domains data are not available through
RAPL) are:

• Package (PKG): measures the energy consumption of
the entire socket. It includes the consumption of all the
cores, integrated graphics, last level caches memory and
controller.

• Power Plane 0 (PP0) : measures the energy consumption
of all processor cores on the socket.

• DRAM: measures the energy consumption of random
access memory (RAM) attached to the integrated memory
controller.

• PSys: (introduced with Intel Skylake) monitors and con-
trols the thermal and power specifications of the entire
SoC and it is useful especially when the source of the
power consumption is neither the CPU nor the GPU. For
multi-socket server systems, each socket reports its own
RAPL values.

How to read data. There are currently three ways to read
RAPL results using the Linux kernel:

• Reading the files under ”/sys/class/powercap/intel-
rapl/intel-rapl:0” using the powercap interface. This re-
quires no special permissions, and was introduced in
Linux 3.13.

• Using the perf event interface with Linux 3.14 or
newer. This requires root (or a paranoid less than
1) sudo perf stat -a -e power/energy-cores/ /bin/ls .
Available events can be found via perf list or under
”/sys/bus/event source/devices/power/events/”.

• Using raw-access to the underlying MSRs under
”/dev/msr”.

This requires root.
To read the energy programmatically there are some C

libraries developed around the three options mentioned before.
For this work, we’ve chosen to start from a code base [4]



developed by a researcher from the University of Maine, that
uses the sysfs method to read energy from the powercap
interface.

III. METHODOLOGY

Energy Consumption values. To get the energy consump-
tion of a running application, a library based on RAPL power-
cap interface has been developed. The library methods return
an energy value, in Joule, which states the energy consumption
of the computation made by the application. Because of
the System’s architecture of the environment on which we
executed our tests, we’ve only focused on reading the energy
consumption of the Package Domain (PKG), which means
that we’ve measured the energy consumption of the entire
socket. More details about the Experimental Environment will
be discussed in the following relative paragraph.

Power values. Because the energy consumption values are
dependent from the execution time of the running application,
we needed to also get the power (in Watt), which is an instant
value. So, we took the power value multiple times during
our programs’s execution tests, with a sampling rate of 0.2
seconds.

Test methodology. We have decided to use the median as
a reference parameter. The median is used as an alternative to
the arithmetic mean because it is not affected by the presence
of anomalous data and it is a value actually obtained during
the measurement. Every execution has produced
[execution time / sampling rate] number of power measure-
ments and from these results, we choose the median value.
Then, this median value has been integrated with the execution
time and with the energy consumption value of each single
execution.

Experimental Environment. The experimental environ-
ment in which we’ve tested our application’s energy consump-
tion is based on a NUMA Architecture. This machine has 2
main sockets, each one composed of 6 Intel Xeon CPU E5-
2430 Cores. Each Core allows Hyperthreading, so each socket
can schedule up to 12 threads, 24 in total for both two sockets.
Each socket is identified as NUMA Node, so that we have
Node 0 and Node 1. The distribution of the Cores among the
NUMA Nodes is the following:

• all the Cores with an even identifier are located on
NUMA Node 0.

• all the Cores with an odd identifier are located on NUMA
Node 1.

To compile our applications, we’ve used GCC Compiler
(version 7.5). To run in parallel our applications we’ve used
OpenMP (version 4.5).

OpenMP Configuration. Dealing with NUMA Architec-
ture, we’ve faced three main problems: Thread Affinity, Loop
Scheduling and Thread Migration. To solve these problems,
we’ve applied some OpenMP configurations. Knowing the
Core’s distribution among the Nodes is very useful to solve
the Thread Affinity and the First Touch Placement Policy
problems on a NUMA Architecture.

In our application codes, we initialize data in a sequential
way, and we only execute the computational part in parallel.
Because of the First Touch Placement Policy, the thread
running in sequential initializes data on the memory of the
NUMA Node which contains the Core on which the current
thread is scheduled. To take advantage of locality, we wanted
to force threads to run on a specific subset of Cores, because
it impacts memory performance. In other words, we wanted
to run our applications by scheduling the threads only on
the Cores of a single socket, in order to exploit the best
performance in terms of memory access.

To force threads to be scheduled on a specific subset of
Cores, we’ve set an OpenMP environment variable called
“OMP PLACES” to the following value:

OMP PLACES={0},{12},{2},{14},{4},{16},{6},{18},
{8},{20},{10},{22},{1},{13},{3},{15},{5},{17},
{7},{19},{9},{21},{11},{23}.
By doing this, the thread which initializes data will be
scheduled on one of the Cores on NUMA Node 0, so that
it will allocate Memory of the NUMA Node 0. When we’re
going to execute the computation in a parallel way, all the
other threads will be scheduled on all the Cores with an even
identifier first, which are located on NUMA Node 0, in order
to exploit locality.

To solve the Loop Scheduling problem, we’ve set the
OpenMP environment variable named “OMP SCHEDULE”
to static, to guarantee that all the chucks, in which the iteration
space is divided, are assigned to threads statically, in a Round-
Robin fashion, and not dynamically in a First to Finish order.
Finally, to avoid that a thread, started on a specific Core, may
migrate to another one, we’ve set the OpenMP environment
variable named “OMP PROC BIND ” to true.

IV. IMPLEMENTATION

After having carried out a preliminary study of the environ-
mental problems (on NUMA) and of the measurement values
to be obtained, our focus was on a possible implementation
that would allow us to carry out measurements of energy
consumption for our case.

Computational problems. In order to make our measure-
ments, it was necessary to have implementations of solutions
to some arithmetic problems. Our choice fell on two common
problems:

• Matrix multiplication: it is a mathematical problem where
a multiplication is made between two matrices. This
problem is classified as a problem with a high arithmetic
intensity.

• Dot product: an algebraic operation that takes two equal-
length sequences (in our case two matrices) of numbers,
and returns a single number. This problem is classified
as a low arithmetic intensity problem.

We’ve implemented, for each problem, several versions with
specific optimizations:

• A first version, which is sequential, and uses no optimiza-
tion at all.



• A multi-threaded version, which uses OpenMP to run
compiler directives, such as #pragma omp parallel, with
two, four, and eight threads.

• A Vectorization based version, which uses AVX intrinsics
vectorization for matrix-multiplication with two, four, and
eight threads; and uses OpenMP auto-vectorization for
dot-product (by using all the available threads).

For the Vectorization based version, we’ve obtained the gen-
erated code by the compiler by using an external tool called
“Compiler Explorer”, to verify that vectorial instructions were
actually used.

Code library. Once we wrote the code for matrix-
multiplication and dot-product, we’ve developed an ad hoc
library that contains the methods necessary for the detection of
our findings data during the computation. Two structs hold the
power and energy data, which contains information about total
cores, total packages, cpu model, energy units and domains
availability. To proper detect the information mentioned before
we use the following methods:

• detect cpu(Rapl info rapl), it detects the cpu model by
reading the information under “/proc/cpuinfo” path;

• detect packages(Rapl info rapl), it detects the number
of packages under
/sys/devices/system/cpu/cpu*/topology/physical package id
path.

Total energy consumption is obtained by invoking the follow-
ing methods in the next order:

• rapl sysfs(Rapl info rapl) first, to map the
“/sys/class/powercap/intel-rapl/intel-rapl:*” folders;

• rapl sysfs start(Rapl info rapl), to start energy consump-
tion measurement;

• rapl sysfs stop(Rapl info rapl) to stop energy consump-
tion measurement;

• rapl get energy(Rapl info rapl) to retrieve energy con-
sumption value.

To read the power consumption two methods need to be
called:

• rapl power sysfs(Rapl info rapl, Rapl power info
rapl power) maps the “/sys/class/powercap/intel-
rapl/intel-rapl:*” folders.

• read power(Rapl info rapl, Rapl power info
rapl power, int delay, int total time, char
*source file name) reads the power consumption
of the available domains every delay milliseconds.

We added the previous methods in our codes to obtain results.

V. DISCUSSION

It was certainly not easy to get consistent results.
Our measurements could not be based on a single execution

of the code as possible anomalies due to the environment
could affect the correct execution of the code itself. For this
reason, we tested each different version of our applications 10
times, in order to get enough data to analyze and exclude any
outlier. As mentioned before, we’ve chosen to use the median
value for the power value. Moreover, in order to work always

Fig. 1. Values obtained from the execution of three different optimizations
with three different input sizes - matrix-multiplication.

Fig. 2. Power value chart - matrix-multiplication - input size 1024

on the same data, we’ve chosen to initialize the Matrices
used in our applications by using the random function with a
fixed seed. This way, there won’t be any differences between
multiple executions of the same code, so that the obtained
results can be reproduced. Moreover, because the use of a
NUMA architecture certainly does not facilitate or speed up
the detection operations, on the contrary, a lot of time has been
dedicated to the configuration of the environment variables as
mentioned in the previous chapters.

Matrix-multiplication results.
Figure 1. shows the results obtained from the energy mea-

surements of the different optimizations applied to the Matrix
Multiplication algorithm. The baseline of our measurements
is the sequential code, which has been executed with an input
size parameter of 1024, 2048 and 4096. As we can see from
table, the energy consumption of the application is directly
proportional to the execution time:

• the sequential version consumes 24 Joule for an execution
of 0,81 seconds, which has a matrix size of 1024x1024;

• it consumes 214 Joule for an execution of 6,83 seconds,
which has a matrix size of 2048x2048;

• it consumes 1743 Joule for an execution of 53,3 seconds,
which has a matrix size of 2048x2048.

This trend is also found in the other executions with different
applied optimizations. Another observation we can make from
these results is that, the more optimizations we apply, the more
the execution time decreases, and consequently the more the
energy consumption decreases. So, the energy consumption is
inversely proportional to the number of optimizations made.

The histogram graph in Figure 2. depicts the results obtained
from the power measurements of the Matrix Multiplication
algorithm’s executions with an input size of 1024. These



Fig. 3. Power value chart - matrix-multiplication - input size 2048

Fig. 4. Power value chart - matrix-multiplication - input size 4096

results show an unexpected trend because we can’t state any
correlation between the number of threads used during the
execution and the power consumption, maybe because of the
relatively small input size. More specifically:

• the sequential’s power consumption is 30,9 W;
• the multithreaded’s power consumption with 2 threads is

29 W;
• the multithreaded’s power consumption with 4 threads is

21,89 W;
• the multithreaded’s power consumption with 8 threads is

45 W;
• the simd’s power consumption with 2 threads is 26,5 W;
• the simd’s power consumption with 4 threads is 20 W;
• the simd’s power consumption with 8 threads is 14,4 W.

In Figure 3. is possible to see how the less optimized version
of the code turns out to have a lower power value. This trend
should be confirmed by tests carried out with an even greater
input size. With reference to the execution time and energy
consumption of Figure 1, we can observe that as these values
decrease, the value of the power increases. This increase in
terms of power can also be seen in reference to the number of
threads used during execution. In other words, we can state a
direct correlation between the number of threads used by the
different optimizations and the power consumption.

Figure 4. shows the trend of the power value, as the code
optimizations vary. The lower power value is the one of the
sequential encoding. The two optimizations, multithreaded and
simd with only two threads, appear to have a greater power
value than the one of the sequential version. Comparing this
graph with the table in Figure 1, we can observe that the

Fig. 5. Values obtained from the execution of three different optimizations
with only one input size

optimizations that report a shorter execution time are, on the
other hand, the ones that obtain a higher power value.

Dot-product results.
Figure 5. shows the results obtained from the energy mea-

surements of the different optimizations applied to the dot-
product algorithm. The baseline of our measurements is the
sequential code, which has been executed with an unique input
size parameter: 32768.

Because the OpenMP SIMD directive doesn’t allow to set
the number of threads to execute, this version executes on all
the available threads of the NUMA Architecture previously
described.

This graph shows the power values for running the different
dot-product optimizations. It is possible to note that the
execution times are very small, and for this reason the values
obtained are not very consistent. However, it is possible to
notice the same previous trend as in matrix-multiplication re-
sults: as the parallelism increases, the value of power increases
too.

VI. CONCLUSIONS

This project has been very interesting under different as-
pects. The approach to such a current problem as that of energy
consumption and the approach to using a NUMA architecture
has contributed to increasing our knowledge about them. In
practical terms, this work has expanded our understanding
about how to make performance benchmarking and how to
interpret the results.

Depending on the point of view, the consideration of which
version code is the best, in terms of energy consumption,
may change: the results show that a shorter execution time
consumes less energy, but at the same time, a shorter execution
time is obtained by increasing the parallelism. From our
results, we observe that the more we increase the parallelism,
the higher the power consumption is, which means that the
cores work more intensively but in a smaller range of time.
The choice of the best version code must take into account all
these considerations to make a right tradeoff for the prefixed
objectives.

VII. SOURCE CODE

All source code (including library code, implementation
code) and the results are available at the following link:
https://github.com/co5m0/HPC-Energy

https://github.com/co5m0/HPC-Energy


REFERENCES

[1] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K., Nurmien,
RAPL in Action: Experiences in Using RAPL for Power Measurements,
Beijing University of Posts and Telecommunications, China, 2018.

[2] Spencer Desrochers, Chad Paradis, Vince Weaver, A Validation of DRAM
RAPL Power Measurements, USA, 2016.

[3] Vince Weaver, https://github.com/deater/rapl validation
[4] Vince Weaver, https://www.github.com/deater/uarch-configure/tree/

master/rapl-read

https://github.com/deater/rapl_validation
https://www.github.com/deater/uarch-configure/tree/master/rapl-read
https://www.github.com/deater/uarch-configure/tree/master/rapl-read

	Introduction
	State of art: RAPL
	Methodology
	Implementation
	Discussion
	Conclusions
	SOURCE CODE
	References

